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ABSTRACT: We apply predictive weather metrics and land model sensitivities to improve the 

Colorado State University Water Irrigation Scheduler for Efficient Application (WISE). WISE is 

an irrigation decision aid that integrates environmental and user information for optimizing water 

use. Rainfall forecasts and verification performance metrics are used to estimate predictive 

rainfall probabilities that are used as input data within the irrigation decision aid. These input 

data errors are also used within a land model sensitivity study to diagnose important prognostic 

water movement behaviors for irrigation tool development purposes simultaneously performing 

the analysis in space and time. Thus, important questions such as “how long can a crop water 
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application be delayed while maintaining crop yield production?” are addressed by evaluating 

crop growth stage interactions as a function of soil depth (i.e. space), rainfall events (i.e. time), 

and their probabilistic uncertainties. Editor’s note: This paper is part of the featured series on 

Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue 

for the introduction and background to the series.

(KEYWORDS: data assimilation; irrigation; precipitation; soil moisture; statistics.)

INTRODUCTION

The goal of this work is to apply the methods reviewed and introduced in Jones et al. 

(2019) to specific examples to improve irrigation decision making. The companion paper (Jones 

et al. 2019) described a set of methods that are necessary to link the probabilistic predictive 

weather data to the irrigation tool performance and its possible optimization for economic and 

agricultural productivity. Here we link probabilistic weather performance to the application of 

the CSU Water Irrigation Scheduler for Efficient Application (WISE) tool (Andales et al., 2014; 

Bartlett et al., 2015; WISE. Accessed August 19, 2019, http://wise.colostate.edu/ ) using 

predictive weather data (aWhere, Inc. system. Accessed August 19, 2019: 

https://www.aWhere.com). Forecast metrics are used to assess the predictive rainfall 

performance and a land model sensitivity study is used to analyze soil moisture profile 

behaviors. The sensitivity analysis links the weather input data errors in space and time to water 

movement diagnostics for use in irrigation scheduling improvements.

A follow-on study within the Ogallala Water Coordinated Project (OWCAP) (OWCAP, 

Accessed, August 19, 2019, https://www.ogallalawater.org) is underway utilizing irrigation 

schedulers within a variety of crop management and irrigation-decision situations, including 

subsequent crop yield estimates from these tool-based management decisions. A short review of 

similar irrigation tools to WISE (e.g., Kansas State University’s KanSched (Roger and Alam, 

2007); Texas A&M’s Dashboard for Irrigation Efficiency Management (DIEM), Accessed 

August 19, 2019, https://diem.tamu.edu/dashboard/content/static/landing/LandingPage.html ) is 

found in Jones et al. (2019). As applied here, the concepts demonstrate the ability of weather/soil 

modeling systems to diagnose important prognostic water movement behaviors for use in 

irrigation tool development and use. Important questions are addressed, such as “how long can a 

crop water application be delayed while maintaining crop yield production?” by evaluating crop 
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growth stage interactions as a function of soil depth and rainfall events and their uncertainties. 

Lastly, we summarize and draw conclusions from these results, and discuss future implications 

and needs.

METHODOLOGY

In our companion paper (Jones et al., 2019) we reviewed a set of verification metrics for 

predictive precipitation from the national data center weather models. Here we apply the 

reviewed probability performance metric methodologies to examine predictive rainfall 

performance for a specific example. In addition, in our companion paper (Jones et al., 2019) we 

presented a series of adjoint sensitivity methodologies. Here, after the performance metrics 

analysis, we demonstrate the adjoint sensitivity methodology applied to a specific space-time 

analysis example. We focus on the probabilistic sensitivity of the system to the applied water as 

a function of soil depth and time, as the applied water from a predictive model will also be 

probabilistic in its estimate of future rainfall. Thus, crop management needs correspond to water 

consumption requirements at various soil depths related to the potential wait-times of the 

possible upcoming natural rainfall events. Using the adjoint techniques from Jones et al. (2019), 

the tradeoff between statistical predictive natural rainfall estimates and irrigation water 

application management decisions can then be made in a quantitative probabilistic analysis as 

part of an optimization of a non-linear dynamical system (Fletcher 2017).

Precipitation Forecast Verification Metrics

Performance analysis of irrigation tools using predictive weather data is possible using 

the Threat Score (TS), Equitable Threat Score (ETS), and Bier Score (BS) probability 

performance metrics (Jones et al., 2019). For the following simplified examples, only TS is used 

to demonstrate the use and interpretation of performance metrics within an adjoint sensitivity 

context. Many other metrics could be similarly used since the adjoint sensitivity methods make 

use of cost function constraint terms that could be augmented with metric-derived cost term 

constraints. The Threat Score is defined as a simple ratio of the “hits” to the total number of 

events:

 . (1)TS =
a

a + b + c
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where a is the number of “hits”, b is the number of “false alarms”, and c is the number of 

“misses” (Wilks, 1995). TS performance metrics are in common use for forecasts out to three 

days (72h). The National Oceanographic and Atmospheric Administration (NOAA) Global 

Forecast System (GFS) TS scores are available from NOAA/National Center for Environmental 

Prediction (NCEP) (NOAA/NCEP. Accessed August 19, 2019, 

https://www.wpc.ncep.noaa.gov/html/hpcverif.shtml ). Also fundamental to performance is the 

Frequency Bias metric (also known as FBIAS by some), and is defined as (Wilks, 1995):

  , (2)BIAS =
a +  b

a + c

and is the ratio of total rain forecasts (hits and false alarms) to the total number of observations 

(hits and misses). A perfect score for BIAS would be 1. BIAS is commonly used by the weather 

community (Novak, 2014).

Details of the NOAA/NCEP Weather Prediction Center (WPC) verification metrics and 

performance are discussed in Novak et al. (2014), with related land surface model performance 

discussed in Xia et al. (2015). It is important to note that WPC monthly TS and BIAS metrics are 

reported for 24h precipitation forecast TS scores for: Day 1 (24 h), Day 1-update, Day 2, and 

Day 3 forecast periods using 0.5, 1.0, 2.0, and 3.0 in. (1.27, 2.54, 5.14, and 7.62 cm) 

precipitation thresholds. The various reporting thresholds allow for the consideration of unique 

precipitation amounts that may be required for irrigation tool management choices, as not all 

irrigation equipment can complete their full water application cycle in 12 or 24 hours (or longer). 

Thus, some irrigation schedule tool users may require additional flexibility to note how much 

water would be meaningful to their particular irrigation decisions and water throughput 

capacities.

In addition to the TS and BIAS information, the WPC creates monthly composited sets of 

Brier Score (BS) values for the medium-range probability of precipitation (PoP) forecasts in the 

3-7 day forecast range (Weather Prediction Center, Accessed August 19, 2019, 

https://www.wpc.ncep.noaa.gov/html/hpcverif.shtml ). The BS is defined as:

 , (3)BS =
1�∑�� = 1

(��― ��)
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where n is the total number of forecasts, k represents the kth forecast or observation of n total 

forecasts, and pk and ok are the forecast and observed probabilities for each kth forecast, 

respectively (Brier, 1950).

The need for BS was in part determined by the nature of medium range forecasting, as 

weather forecasts can be improved substantially by aggregating many models together into the 

ensemble. Thus, new verification metrics were developed to suit the ensemble nature of the more 

accurate medium-range PoP predictions (Marty et al., 2012). The ensemble aspect of short and 

medium range weather prediction continues to undergo rapid advancement which may result in 

new metrics for precipitation assessment or more advanced post-processing (e.g., Model Output 

Statistics (MOS)) to minimize known artifacts (Jones et al., 2007; Charba and Samplatsky, 2011; 

Novak et al., 2014; Hamill et al., 2017); however, the requirement for longterm institutional 

monitoring of weather forecast improvement makes it likely that key forecast metrics like the 

TS, BIAS, and BS will be used by the operational centers for the foreseeable future. Of course, 

new methods and data sets continue to be updated, added, and shared to augment the baseline 

verification metrics. The creation and on-line archival of weather forecast performance data 

metrics by the weather data centers makes the information available to irrigation decision tool 

developers.

Hollis, OK Mesonet Field Site

We use mesonet atmospheric and soil profile data from the Oklahoma Mesonet 

(McPherson, et al. 2007) at Hollis, OK (3 miles west of Gould, OK in Harmon County, OK) 34  

41’ 7” N, 99  49’ 59” W). A site description for Hollis, OK indicates that its soil has a clay soil 

texture (44-56% clay) with relatively low native vegetation (OK Climatological Survey: 

Accessed August 19, 2019, http://www.mesonet.org/index.php/sites/site_description/holl ). The 

OK Mesonet data for Hollis, OK is available on-line (OK Climatological Survey: Accessed 

August 19, 2019, http://www.mesonet.org/index.php/weather/category/soil_moisture ; Accessed 

August 19, 2019, http://www.mesonet.org/index.php/weather/category/soil_temperature ) with 

additional data fields and variables for weather and climate also available. The soil moisture data 

is measured at 5, 25, and 60 cm depths every 30 minutes. Soil temperature data is available at 5 

and 10 cm depths every 15 minutes for native vegetation, and at a 10 cm depth under bare soil. A 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

suite of meteorological sensor array data is available for the atmospheric measurements. The data 

that we use is from a September 2003 case study.

PREDICTIVE PROBABILTY METRIC RESULTS

We now intercompare and discuss predictive probability metrics using several examples. 

These metrics are later used to drive the land model sensitivity analysis results.

When interpreting the Threat Scores (TS) as a function of time it is important to recall 

that probabilities are being used to generate the TS, and that a perfect forecast of upcoming 

precipitation would receive a TS value of 1. Therefore, temporal differences are related linearly 

to probability improvements, so that a monthly (at a 0.5 in. (1.27 cm) precipitation threshold) TS 

value of 0.37 for the 1 Day June 2018 forecasts can be intercompared to the 2 and 3 Day TS 

values, 0.28, and 0.21, respectively (Fig. 1). The TS ratios can be used in irrigation tools like 

WISE to provide value and error estimation abilities using the precipitation forecast data. As 

perfect knowledge would have a TS value of 1, 1-TS is the amount that the forecasts will be 

degraded as each day progresses and the model error increases (to put it in a practical but 

negative light). Thus, from Figure 1, precipitation forecast results as derived 1-TS values at 

Day 1, 2, and 3 (+24h, +48h, and +72h forecast verification times) are: 63%, 72%, and 79% less 

likely to be correct than the verification observations at Day 0, as compared to just randomly 

selecting a chance rainfall event without any model assistance.

It is important to note in early spring, a critical soil moisture initial estimation period 

(Hook, 1994; Ceglar et al., 2017), that the forecasts are more accurate before the convective 

precipitation season begins. Thus, some decision-critical moments might be very well served by 

use of model estimates of precipitation as decisions are made in the early season, and also as 

light water application amounts are required (as the light rainfall events are also better predicted 

by the precipitation forecast systems). For the WPC-provided results shown in Fig. 1, the 

assessment of April 2018, has monthly TS values of 0.54, 0.49, and 0.45, respectively for 

forecast Days 1, 2, and 3. The TS values translate to improved (smaller) probability decreases of: 

46%, 51%, and 55%, respectively. There is a ~ 40% prediction improvement in April as 

compared to June, which is in the more difficult convective precipitation seasonal forecast period 

for the continental United States. As there is substantial seasonality, it is important for irrigation 

management tools to understand the value of the precipitation forecasts for their particular crop 
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season, also conservative estimates can be used for the TS values (including the BIAS) which are 

also available at the same WPC web site. It should be noted however that the BIAS is targeted 

for minimization and mitigation by the WPC weather model development teams, as it can be 

mitigated using numerical techniques, while forecast skill is a predictive model performance 

element that is eventually overcome by increasing weather model errors at longer predictive 

times. Fig. 1 shows the progression of the model error increasing (with decreasing TS values) as 

it moves from Day 1 (red), to Day 2 (green), to Day 3 (blue). At some point in time the forecast 

stops having tangible value to the user (approaches a TS of zero). However, from a decision-

making perspective, TS values above zero are likely where the costs and opportunity costs of 

deferring irrigation applications may lose value, as false rainfall predictions would force crops to 

endure dry conditions needlessly.

Increasing the precipitation threshold for the TS metric (for example using TS 

precipitation thresholds of 0.5 in (1.27 cm) to 1.0 in (2.54 cm) by intercomparing results shown 

in Figs. 1 and 2) tends to lower the TS values, as larger precipitation is associated with 

convective rainfall which is more non-linear and difficult to predict, especially in terms of spatial 

placement. While some radar data assimilation systems can improve the 0-12 h convective 

rainfall forecasts, it is very difficult to extend the error reductions into longer time periods due to 

the non-linear model error growth related to convective processes (Tai et al., 2011). The non-

linearity model error growth problem also adversely impacts cloud-prediction at longer-

predictive times in the satellite cloud data assimilation systems as well (e.g., see Vukicivec et al., 

2004).

The interannual variability of the precipitation TS metrics can be significant. Here we 

compare 1.0” rainfall TS threshold results from June 2017 – June 2018 (Fig. 2) to June 2018 – 

June 2019 (Fig. 3). The June 2018 – June 2019 year was generally better predicted with a 

stronger winter (December and January) maximum of TS values than for the June 2017 – June 

2018 year results. However, performance was degraded in the Fall of 2018 (September and 

October 2018) and the Spring of 2019 (March and April 2019) (Fig. 3) as compared to the 2017-

2018 TS results (see Fig. 2). Thus, use of static TS results from one year to another for irrigation 

scheduling tool development could result in erroneous estimates of model performance as 

interannual precipitation variability is conditional on occurring weather conditions and synoptic 

and climatological dynamical flows (Gutzler, 2004). Model error biases can be manifested more 
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clearly in particular climatic regimes such as drought and monsoon periods (Novak et al., 2014). 

Thus, we recommend that model performance metrics be used that are appropriate for the current 

analysis season and region of interest.

The monthly NOAA WPC GFS BIAS results for June 2018 to June 2019 are shown in 

Fig. 4. Recall that a perfect BIAS score is one. As can be seen in Fig. 4, the model generally 

performs better in the winter than during the convective summer season (June – August). The 

BIAS also has a dependence with forecast lead times (see Day 1 (red), Day 2 (green), and Day 3 

(blue) in Fig. 4) with generally shorter lead times having improved BIAS, however some longer-

term forecasts (in the average) have improved BIAS statistics which indicates better statistical 

behaviors about not over- or under-predicting rainfall events. In practice the BIAS errors can be 

improved by applying Model Output Statistics (MOS) to adjust the BIAS of forecasts (Novak et 

al., 2014).

BS values can be similarly interpreted as the TS example above, keeping in mind that the 

computation of BS is different due to the use of the ensemble models, and that the BS is 

quadratic in terms of the probabilities, and thus should be interpreted by taking the square-root of 

the BS values (compare (1) and (3)). Also, since the total number of forecasts, n, is a scalar in the 

BS expression, BS values should only be interpreted with other like-computed BS values, and 

not intermixed with the TS values, as they are inherently different definitions: a perfect 

prediction BS score would tend toward zero in a quadratic manner with the rainfall prediction 

error, while a perfect prediction TS score tends toward 1 in a linear relationship with the rainfall 

prediction error. For example, in Fig. 5 the NOAA WPC GFS monthly precipitation forecast 

Brier Scores (BS) for July 2018 – July 2019 are shown. The BS results (Fig. 5) show the 

progression of the BS model error increasing (with increasing precipitation errors) as it moves 

from Day +3 (red), to Day +4 (green), to Day +5 (blue), to Day +6 (yellow), to Day +7 (orange). 

All results (Fig. 5) show similar increasing errors with greater prediction times for each month 

between July 2018 and July 2019. It is notable that the results for Feb. 2019 appear to perform 

worse in general than the other months for this particular monthly time series. This is likely 

caused by difficult intraseasonal/climatic conditions encountered during that month (Novak et 

al., 2014). Also note the relatively high BS values that are greater than 0.15 for predictive Days 6 

and 7 (recall that it is quadratic in terms of precipitation errors, thus a BS of 0.1 is 22% more 

accurate than a forecast with a BS of 0.15, and 41% more accurate than a forecast with a BS of 
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0.2). This translates to relatively modest-to-poor rainfall prediction capabilities at Days 6-7. 

Thus, we anticipate that the TS values for predictive Days 1-3 would be more useful to actual 

irrigation scheduler tool users (as these shorter-term weather predictions are more accurate) 

depending on their time scale of interest. This demonstrates the trade-offs between seeking 

longer-term predictive capabilities, and the reduced accuracy of such predictions.

TIME-SCALE DEPENDENT RESULTS

Data assimilation methodologies can be used to provide insight into the links between 

model physics behaviors as a function of space and time when adjoints are used as a diagnostic 

tool. Adjoints of a tangent-linear model are used to efficiently compute local gradients of a 

function of model input and output parameters (Benedetti, et al. 2003). Using variational data 

assimilation methods, the optimization problem using adjoints of a tangent-linear model is 

normally focused on the reinitialization of the model state variables to minimize a penalty 

function in space and time (also known as a cost function) (Jones et al., 2019; Fletcher, 2017). In 

time-dependent variational techniques such as four-dimensional variational (4DVAR) data 

assimilation, the cost function can be determined as a function of the temporally-integrated 

adjoint sensitivities (Fletcher, 2017). Here we examine the linkage between space and time using 

adjoints of a vertical soil profile land model in an adjoint sensitivity analysis. In our case, the 

control variables are the soil moisture at various soil depths. The adjoint sensitivities, L (ti, t0)T, 

are computed with respect to these control variables, where L is the tangent linear operator of the 

forward model, M. The non-linear forward model in this case is a prognostic model of the energy 

and water fluxes within the vertical soil profile as a function of time and space and is based on 

the Land Ecosystem-Atmospheric Feedback model (LEAF-2) formulization (Walko, et al., 

2000).

In our example the adjoints are computed for a single column, thus collapsing the 

4DVAR system to a 2DVAR system. The land surface model and its respective adjoint 

sensitivities are used in a 2DVAR solver. Here we use a Gaussian 4DVAR framework (but 

applied to 2-dimensions (2D), i.e., vertical soil depth, z, and time, t); however, in the future, a 

non-Gaussian 4DVAR framework (Fletcher, 2017) could be used since soil moisture variables 

have skewed data distributions and are therefore non-Gaussian. Each of the 2DVAR model and 

adjoint components has undergone a series of tests (outlined in Jones et al., 2004). Here the work 
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differs from Jones et al. (2004), in that the temporal soil model variables as a function of depth 

are being analyzed rather than the microwave radiance operator adjoint sensitivities. In addition 

to perturbation-scaling-factor analysis (examined in detail in Jones et al., 2004) to gain physical 

insights into the model sensitivities for a range of parameters, nonlinear tests can be performed to 

ensure that the adjoints are correctly formulated and are operating within nominal linear regimes. 

The non-linear test is computed using linear inner product perturbation tests such that

 , (4)NL =
⟨����′, �′⟩― ⟨��′,   ��′⟩⟨��′,��′⟩

where < > denotes the inner product of the vectors, and xʹ is the model perturbation state vector. 

In the irrigation system use case, the model perturbation state vector contains a vector of rainfall 

perturbations and supporting land model environmental perturbation states, such as perturbations 

of soil moisture and soil temperature at a geographical site location. The NL test makes use of 

the fact that the two numerator expressions in (4) would be equal if the linear operator, L, were 

analytically linear. Our experience is that usually the NL test can be computed to within 1% 

accuracy for most encountered physical models, however each model could have its own unique 

challenges. Minimizing the problems encountered with strong non-linear systems may require 

redefining or constraining the strong nonlinearities or limiting the functions to their linear 

operating ranges.

A set of adjoint sensitivity tests can be conducted making use of the adjoint operators, the 

tangent linear model operators, and the perturbation vectors.

Figure 6 shows results from Hollis, OK, (just south of the Ogallala Aquifer Region 

(OAR) within western OK), assuming no additional rainfall after the initial rain event. Our 

results show that the penetration depth of the soil moisture information with time is dependent on 

soil texture information. Most soils show very deep penetration of the soil moisture sensitivity 

(>1 m soil depths) after approximately 1-2 weeks of temporal data assimilation (Fig. 6). 

However, some soils require longer integration times.

The adjoint sensitivity test estimates the relative component strength of the sensitivities 

of the soil moisture state vector in the vertical soil profile at 7 soil depths (-0.01, -0.02, -0.04, -

0.08, -0.15, -0.30, -0.60, and -1.2 m depths). The adjoint-based relative component strength 

(RCS, after Jones et al., 2004) is given by
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, (5)���� =
⟨����′,�′⟩�⟨����′,�′⟩

where < >i denotes the inner product component of the ith model vector element (e.g., the RCSi 

component would correspond to the soil moisture variable, out of N possible model control 

variables in the model state vector, x). The RCSi measure is normalized to the full inner product, 

i.e., the denominator of (5), which is always positive. All RCS magnitudes for a particular base 

state sum to 100%, i.e., 

. (6)∑�� = 1
���� = 100%

In Figure 6 normalized adjoint sensitivity (i.e., RCS) results are shown for the soil 

moisture variables at each model soil level (7 soil levels are used here) as a function of adjoint 

integration time. It is important to note that the dependency of the RCSi on a particular surface 

soil moisture perturbation (equivalent to a precipitation input flux) switches between the surface 

variables and the upper soil levels down toward the lower soil levels as the soil continues to dry 

out with time. The state variables are initialized with atmospheric station data from Hollis, OK 

(34o 41’11”N, 99 o 55’ 1”W) from the Oklahoma Mesonet (McPherson et al., 2007). The soil 

begins the simulation integration using a soil-saturated volumetric soil moisture content, with the 

soil experiencing drying atmospheric conditions (however, the actual conditions are less 

important than the pedantic demonstration of the adjoint sensitivities, as any condition within the 

OAR could be evaluated using the relative component strength method).

The perturbation strength is initially very large for the near-surface soil layer (the -0.01 

cm level – it is a shallow soil layer, so it has less water than the lower levels to diffuse toward the 

atmosphere via evapotranspiration). The sensitivity results show increasing times between 

alternating sensitivity leadership from the top to the lower soil moisture levels. The strength of 

the sensitivity decreases as the integration is performed, however since we are normalizing the 

component strengths, the adjoint sensitivity results can be used to instead demonstrate the 

sensitivity “leadership” as a function of time.

The perturbation strength analysis using the adjoint method demonstrates the power of 

the adjoint sensitivities, as it is computing the sensitivities using the adjoint and tangent linear 

operators without having to perform numerous Monte Carlo simulations, or other perturbation-

based numerical system sensitivity studies, as the adjoint sensitivity study is performed as a 
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series of function calls. The analysis is also a fully simultaneous sensitivity analysis solution and 

could just as easily demonstrate joint perturbation effects with simultaneous multivariate 

perturbations being used instead of other perturbation analysis interactions.

From the results shown in Fig. 6, time scales up to 7-14 days should be considered for 

soil dry-down if roots penetrate to the 1.2 m soil depth. While alternate scenarios could be 

studied for differing solar, atmospheric, and cloud conditions to understand those effects, 

systems like the adjoint sensitivity analysis can demonstrate constraints on various scenarios and 

can help identify precipitation temporal windows of importance for particular crop growth stages 

(with root depths at various associated levels). As each depth has a unique time decay period, the 

time decay values could be used within the irrigation tools to better understand the value of the 

water that is being placed onto the crop at a particular time, thus helping to further prioritize the 

value of plant available water amounts.

SUMMARY AND CONCLUSIONS

Summary of Results

We applied several precipitation forecast verification metrics to the NOAA GFS model 

predictions (Novak, et al. 2014) for use with the irrigation scheduler optimization problem. We 

also applied the numerical weather prediction (NWP) data assimilation methodologies to a land 

model to demonstrate a method to diagnose adjoint sensitivities to address important prognostic 

water constraint questions, such as “how long can I delay a crop water application?”. 

A commercial provider of GFS predictive weather data (aWhere, Inc. system. Accessed August 

19, 2019: https://www.aWhere.com) is used to enable efficient near real-time access within a 

cloud-based framework. The precipitation verification metrics are available (monthly, 

seasonally, and regionally) in near real-time for use by the irrigation management research 

community for further prognostic weather data use within irrigation tool developments and 

research.

The following is a summary of key results:

(1) From the predictive probability metric results, seasonal precipitation forecast 

differences show enhanced abilities of the forecast data to perform well in early spring which is a 

critical period for soil moisture conditions for crop management decisions (Hook, 1994; Ceglar 
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et al., 2017). The GFS precipitation forecast verification results show a general decrease in 

predictive skill during the summer convective precipitation months. 

(2) In addition, the prediction probability metric results show that precipitation forecast 

skills are stratified by precipitation threshold amount, with light rain events being forecast with 

more skill and heavy rainfall events being forecast with less skill.

(3) A time analysis of the predictive weather performance metrics show that as 

precipitation forecasts predict further into the future that their TS and BS values decrease; 

however, it is noted that economic and conservation values are determined by the particular crop 

application, and needs to be assessed within the context of the economic opportunity-costs of 

delaying an irrigation application. In addition, it was shown from the time series analysis that the 

presence of interannual variability within the predictive model rainfall performance results in a 

recommendation that current model performance metric statistics be used in irrigation scheduler 

tools to represent ongoing climatic and synoptic weather conditions.

(4) A time-scale dependent analysis using adjoint model sensitivities was demonstrated 

with a case study application at Hollis, OK. The adjoint sensitivity results are used to examine 

complex soil profile issues that are a function of meteorological data, soil conditions, and crop 

growth stage as a function of space and time. The adjoints are helpful to diagnose the question of 

“how long can I delay a crop water application”, as many simultaneous feedbacks are 

represented within the analysis. Adjoint model sensitivities are also shown to be computationally 

efficient and are used to integrate the atmospheric, soil, and crop conditions for effective near 

real-time agronomic decisions.

Current Status of the WISE System Development 

The WISE system is publicly available (WISE. Accessed August 19, 2019, 

http://wise.colostate.edu/ ). The current system is operational using Colorado Agricultural 

Meteorological Network (CoAgMet) weather station data with predictive weather data from 

aWhere currently undergoing extensive offline tests. The adjoint sensitivities and uncertainty 

propagation is not yet integrated into WISE but rather is a standalone diagnostic tool. In the 

future, additional tests and assessments will determine if the adjoint sensitivities are fully 

integrated into the online operational WISE. Currently many studies are possible to examine use 
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of the adjoint sensitivity method to optimize various WISE model parameters to improve its 

performance. That work will be part of our next incremental WISE development steps.

Conclusions

Due to the availability of new data sets and data management capabilities, and the 

capacity of cloud-based software frameworks, numerous near real-time enhancements to WISE 

are possible. The weather performance metrics should be integrated into future irrigation tools, 

so that costs and decisions can be balanced adequately. Soon, we plan additional tests of the 

hypothesis that the prognostic NWP precipitation information adds value to WISE. We will also 

explore the limits of that information to improve decision-making. Selected irrigated fields in 

northeast Colorado that are near CoAgMet weather stations will be used to further test the 

integration of NWP precipitation forecasts with WISE for many additional crop management 

configurations and situations. We also plan to collaborate with OWCAP team members based at 

Kansas State University (KSU), Texas A&M, and Oklahoma State University (OSU) who are 

working to improve other related Ogallala-focused irrigation decision-support systems.

In conclusion, we have created a shareable test environment for linking irrigation tools to 

weather and climate to improve decision-making systems leading to optimized crop performance 

and yield. Many facets of irrigation decision-making could be impacted and targeted by specific 

optimization methods. For example, water efficiencies could be gained by optimizing water 

applications within time and space targeting crop growth stages and sensitivities to crop yield as 

a function of soil depth. Water and fertilizer costs could be optimized toward immediate water 

availability (perhaps due to upcoming scheduled water restrictions during drought conditions) 

and the economic opportunity risks of waiting for predicted rainfall, rather than continuing to 

apply water and fertilizer at times that might not be as optimal. These decision-making methods 

could also be used to estimate and minimize the probabilities of encountering increased costs due 

to fertilizer leaching effects. Thus, making fertilizer applications more cost effective as an active 

part of the irrigation management decision chain. Secondary effects such as reducing surface 

runoff from the over application of water could likewise be important to soil sustainability, 

limiting soil wind erosion, and improving downstream water quality. Healthy soils that balance 

soil moisture conditions with soil microbiome community development requirements could help 

mitigate soil fungal disease issues and improve overall soil heath. All these potential benefits 
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could be through a series of balanced and optimized controlled water applications through 

intentional and comprehensive crop management practices. Looking ahead to the future, 

additional teams and networks-of-teams, along with industry partners, can build upon these 

multi-disciplinary and multi-faceted modeling capabilities, as demonstrated by the growing cadre 

of precision agriculture analytics firms that are driven by cloud-based data sets and services 

(Wolfert et al., 2017).
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Figure 1.  National Oceanographic and Atmospheric Administration (NOAA) Weather Prediction Center 

(WPC) Global Forecast System (GFS) monthly precipitation forecast Threat Score (TS) for 

June 2017-June 2018 for a 0.5 in. (1.27 cm) precipitation threshold. Data results are from the 

monthly WPC verification (WPC verification system. Accessed July 15, 2018, 
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https://www.wpc.ncep.noaa.gov/images/hpcvrf/wpc10.gif ). The TS for a 0.5 in. (1.27 cm) 

precipitation threshold is shown for lead times of (red) Day 1 (+24h), (green) Day 2 (+48h), 

and (blue) Day 3 (+72h).

Figure 2.  NOAA WPC GFS monthly precipitation forecast TS for June 2017-June 2018 for a 1.0 in. 

(2.54 cm) precipitation threshold. Data results are from the monthly WPC verification (WPC 

verification system. Accessed July 15, 2018, 

https://www.wpc.ncep.noaa.gov/images/hpcvrf/wpc10.gif ). The TS for a 1.0 in. (2.54 cm) 

precipitation threshold is shown for lead times of (red) Day 1 (+24h), (green) Day 2 (+48h), 

and (blue) Day 3 (+72h).

Figure 3.  NOAA WPC GFS monthly precipitation forecast TS for June 2018-June 2019 for a 1.0 in. 

(2.54 cm) precipitation threshold. Data results are from the monthly WPC verification (WPC 

verification system. Accessed August 16, 2019, 

https://www.wpc.ncep.noaa.gov/images/hpcvrf/wpc10.gif ). The TS for a 1.0 in. (2.54 cm) 

precipitation threshold is shown for lead times of (red) Day 1 (+24h), (green) Day 2 (+48h), 

and (blue) Day 3 (+72h).

Figure 4.  NOAA WPC GFS monthly precipitation forecast Bias (BIAS) for June 2018-June 2019 for a 

1.0 in. (2.54 cm) precipitation threshold. Data results are from the monthly WPC verification 

(WPC verification system. Accessed August 16, 2019, 

https://www.wpc.ncep.noaa.gov/images/hpcvrf/wpc10bias.gif ). The Bias for a 1.0 in. (2.54 

cm) precipitation threshold is shown for lead times of (red) Day 1 (+24h), (green) Day 2 

(+48h), and (blue) Day 3 (+72h).

Figure 5.  NOAA WPC GFS monthly precipitation forecast Brier Scores (BS) for July 2018-July 2019 

for forecast days 3-7. The monthly composite is valid for the analysis date (listed on the 

abscissa as Year/Month). Data results are from the monthly WPC verification (WPC 

verification system. Accessed August 16, 2019, 

https://www.wpc.ncep.noaa.gov/images/hpcvrf/brier.gif ). The BS are for precipitation 

forecast lead times of (red) Day 3 (+72h), (green) Day 4 (+96h), (blue) Day 5 (+120h), Day 6 

(+148h), and Day 7 (+172h).

Figure 6.  Normalized adjoint sensitivity results for Hollis, Oklahoma soil conditions for a Sep. 2003 case 

study. Soil depths are (blue) -0.01 m, (green) -0.02 m, (dark red) -0.04 m, (purple) -0.08 m, 

(light blue) -0.15 m, (yellow) -0.30 m, (magenta) -0.60 m, and (dark blue) -1.2 m, as a 
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function of adjoint integration time (adjoint integration times move from right to left, 

integrating back to the initial soil moisture conditions at time, t0. Maximum depth sensitivity at 

a 1.2 m depth (highlighted above) is achieved after 14 days of adjoint integration backwards in 

time (at t=7 days).
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